Single-cell RNA Profiling Identifies Diverse Cellular Responses to EWSR1-FLI1 Down-regulation in Ewing Sarcoma

Author:

Khoogar Roxane,Lawlor Elizabeth R.,Chen Yidong,Ignatius Myron,Kitagawa Katsumi,Huang Tim H.-M.,Houghton Peter J.

Abstract

ABSTRACTSingle-cell analyses provide insight into time dependent behaviors in response to dynamic changes of oncogene expression. We developed an unbiased approach to study gene expression variation using a model of cellular dormancy induced via EWSR1-FLI1 down-regulation in Ewing sarcoma (EWS) cells. We propose that variation in the expression of EWSR1-FLI1 over time determines cellular responses. Cell state and functions were assigned using random forest feature selection in combination with machine learning. Notably, three distinct expression profiles were uncovered contributing to Ewing sarcoma cell heterogeneity. Our predictive model identified ∼1% cells in a dormant-like state and ∼2-4% with higher stem-like and neural stem-like features in an exponentially proliferating EWS cell line and EWS xenografts. Following oncogene knockdown, cells re-entering the proliferative cycle have greater stem-like properties, whereas for those remaining quiescent, FAM134B-dependent dormancy provides a survival mechanism. We also show cell cycle heterogeneity related to EWSR1-FLI1 expression as an independent feature driving cancer heterogeneity, and drug resistance.SIGNIFICANCEWe show that time-dependent changes induced by suppression of oncogenic EWSR1-FLI1 induces dormancy, with different subpopulation dynamics, including stem-like characteristics and prolonged dormancy. Cells with these characteristics are identified in exponentially growing cell populations and confer drug resistance, and could potentially contribute to metastasis or late recurrence in patients.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Systems Biology Analysis for Ewing Sarcoma;Methods in Molecular Biology;2020-12-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3