Multichannel Sleep Spindle Detection using Sparse Low-Rank Optimization

Author:

Parekh AnkitORCID,Selesnick Ivan W.ORCID,Osorio Ricardo S.ORCID,Varga Andrew W.,Rapoport David M.,Ayappa Indu

Abstract

AbstractBackgroundWe propose a multichannel spindle detection method that detects global and local spindle activity across all channels of scalp EEG in a single runNew MethodUsing a non-linear signal model, which assumes the multichannel EEG to be a sum of a transient component and an oscillatory component, we propose a multichannel transient separation algorithm. Consecutive overlapping blocks of the multichannel oscillatory component are assumed to be low-rank whereas the transient component is assumed to be piecewise constant with a zero baseline. The estimated multichannel oscillatory component is used in conjunction with a bandpass filter and the Teager operator for detecting sleep spindlesResults and comparison with other methodsSeveral examples are shown to illustrate the utility of the proposed method in detecting global and local spindle activity. The proposed method is applied to two publicly available databases and compared with 7 existing single-channel automated detectors. F1scores for the proposed spindle detection method averaged 0.66 (0.02) and 0.62 (0.06) for the two databases, respectively. For an overnight 6 channel EEG signal, the proposed algorithm takes about 4 minutes to detect sleep spindles simultaneously across all channels with a single setting of corresponding algorithmic parametersConclusionsThe proposed method aims to mimic and utilize, for better spindle detection, a particular human expert behavior where the decision to mark a spindle event may be subconsciously influenced by the presence of a spindle in EEG channels other than the central channel visible on a digital screen

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3