Metabolic activity affects response of single cells to a nutrient switch in structured populations

Author:

Dal Co AlmaORCID,Ackermann MartinORCID,van Vliet SimonORCID

Abstract

AbstractMicrobes live in ever-changing environments where they need to adapt their metabolism to different nutrient conditions. Many studies have characterized the response of genetically identical cells to nutrient switches in homogenous cultures, however in nature microbes often live in spatially structured groups such as biofilms where cells can create metabolic gradients by consuming and releasing nutrients. Consequently, cells experience different local microenvironments and vary in their phenotype. How does this phenotypic variation affect the ability of cells to cope with nutrient switches? Here we address this question by growing dense populations of Escherichia coli in microfluidic chambers and studying a switch from glucose to acetate at the single cell level. Before the switch, cells vary in their metabolic activity: some grow on glucose while others cross-feed on acetate. After the switch, only few cells can resume growth after a period of lag. The probability to resume growth depends on a cells’ phenotype prior to the switch: it is highest for cells crossfeeding on acetate, while it depends in a non-monotonic way on growth rate for cells growing on glucose. Our results suggest that the strong phenotypic variation in spatially structured populations might enhance their ability to cope with fluctuating environments.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3