Budding yeast centromeric DNA and A+T rich bacterial DNA can function as centromeres in the fission yeast Schizosaccharomyces pombe

Author:

Barbosa Anne C,Xu Zhengyao,Karari Kazhal,Hauf SilkeORCID,Brown William RAORCID

Abstract

Eukaryotic centromeric DNA is famously variable in evolution but currently, this cannot be reconciled with the conservation of eukaryotic centromere function. It seems likely that centromeric DNA from different organisms contains conserved functionally important features but the identity of these features is unknown. The point centromeres of the budding yeast Saccharomyces cerevisiae and the regional centromeres of the fission yeast Schizosaccharomyces pombe are separated by 350 million years of evolution and are canonical examples of the paradoxical relationship1 between centromeric DNA sequence and function. We have established a centromere-replacement strategy in Schizosaccharomyces pombe in order to resolve this paradox experimentally. Centromere-replacement shows that an A+T rich bacterial DNA sequence has weak centromere function and that elements of the Saccharomyces cerevisiae centromere embedded in short sequences from the non-centromeric S. pombe wee1 gene function almost as well as native S. pombe centromeric DNA. These observations demonstrate that determinants of centromere function are held in common by the budding and fission yeasts and that A+T rich DNA is both necessary and sufficient for function in S. pombe. Given the evolutionary distance between these yeasts, it is likely that A+T rich DNA has centromere function in a wide variety of eukaryotes. Centromere-replacement uses unidirectional serine recombinases that work well in many organisms2 3 and our experimental strategy should allow this idea to be tested in other eukaryotes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3