USP15 participates in HCV propagation through the regulation of viral RNA translation and lipid droplet formation

Author:

Kusakabe Shinji,Suzuki Tatsuya,Sugiyama Yukari,Haga Saori,Horike Kanako,Tokunaga Makoto,Hirano Junki,He Zhang,Chen David Virya,Ishiga Hanako,Komoda Yasumasa,Ono Chikako,Fukuhara Takasuke,Yamamoto Masahiro,Ikawa Masahito,Satoh Takashi,Akira Shizuo,Tanaka Tomohisa,Moriishi KohjiORCID,Fukai Moto,Taketomi Akinobu,Yoshio Sachiyo,Kanto Tatsuya,Suzuki Tetsuro,Okamoto Toru,Matsuura YoshiharuORCID

Abstract

AbstractHepatitis C virus (HCV) utilizes cellular factors for an efficient propagation. Ubiquitin is covalently conjugated to the substrate to alter its stability or to modulate signal transduction. In this study, we examined the importance of ubiquitination for HCV propagation. We found that inhibition of de-ubiquitinating enzymes (DUBs) or overexpression of non-specific DUBs impaired HCV replication, suggesting that ubiquitination regulates HCV replication. To identify specific DUBs involved in HCV propagation, we set up an RNAi screening against DUBs and successfully identified ubiquitin-specific protease 15 (USP15) as a novel host factor for HCV propagation. Our studies showed that USP15 is involved in translation of HCV RNA and production of infectious HCV particles. In addition, deficiency of USP15 in human hepatic cell lines (Huh7 and Hep3B/miR122 cells) but not in a non-hepatic cell line (293T cells) impaired HCV propagation, suggesting that USP15 participates in HCV propagation through the regulation of hepatocyte-specific functions. Moreover, we showed that loss of USP15 had no effect on innate immune responses in vitro and in vivo. We also found that USP15-deficient Huh7 cells showed reductions in the sizes and numbers of lipid droplets (LDs), and addition of palmitic acids restored the production of infectious HCV particles. Taken together, these data suggest that USP15 participates in HCV propagation by regulating the translation of HCV RNA and formation of LDs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3