Dual functionality of the TasA amyloid protein inBacillusphysiology and fitness on the phylloplane

Author:

Cámara-Almirón Jesús,Navarro Yurena,Magno-Pérez-Bryan M. Concepción,Molina-Santiago Carlos,Pearson John R.,Díaz-Martínez Luis,de Vicente Antonio,Pérez-García AlejandroORCID,Romero Diego

Abstract

AbstractBacteria can form biofilms that consist of multicellular communities embedded in an extracellular matrix (ECM). Previous studies have demonstrated that genetic pathways involved in biofilm formation are activated under a variety of environmental conditions to enhance bacterial fitness; however, the functions of the individual ECM components are still poorly understood. InBacillus subtilis, the main protein component of the ECM is the functional amyloid TasA. In this study, we demonstrate that beyond their well-known defect in biofilm formation,ΔtasAcells also exhibit a range of cytological symptoms indicative of excessive cellular stress, including DNA damage accumulation, changes in membrane potential, higher susceptibility to oxidative stress, and alterations in membrane dynamics. Collectively, these events can lead to increased programmed cell death in the colony. We show that these major physiological changes inΔtasAcells are likely independent of the structural role of TasA during amyloid fiber formation in the ECM. The presence of TasA in cellular membranes, which would place it in proximity to functional membrane microdomains, and mislocalization of the flotillin-like protein FloT inΔtasAcells, led us to propose a role for TasA in the stabilization of membrane dynamics as cells enter stationary phase. We found that these alterations caused by the absence of TasA impair the survival, colonization and competition ofBacilluscells on the phylloplane. Taken together, our results allow the separation of two complementary roles of this functional amyloid protein: i) structural functions during ECM assembly and interactions with plants, and ii) a physiological function in which TasA, via its localization to the cell membrane, stabilizes membrane dynamics and supports more effective cellular adaptation to environmental cues.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3