Characterizing Activity and Thermostability of GH5 Cellulase Chimeras from Mesophilic and Thermophilic Parents

Author:

Zheng Fei,Vermaas Josh V.,Zheng Jie,Wang Yuan,Tu Tao,Wang Xiaoyu,Xie Xiangming,Yao Bin,Beckham Gregg T.,Luo Huiying

Abstract

ABSTRACTCellulases from glycoside hydrolase (GH) family 5 are key enzymes in the degradation of diverse polysaccharide substrates and are used in industrial enzyme cocktails to break down biomass. The GH5 family shares a canonical (βα)8-barrel structure, where each (βα) module is essential for the enzyme stability and activity. Despite their shared topology, the thermostability of GH5 enzymes can vary significantly, and highly thermostable variants are often sought for industrial applications. Based on a previously characterized thermophilic GH5 cellulase from Talaromyces emersonii (TeEgl5A, with an optimal temperature of 90°C), we created ten hybrid enzymes with the mesophilic cellulase from Prosthecium opalus (PoCel5) to determine which elements are responsible for enhanced thermostability. Five of the expressed hybrid enzymes exhibit enzyme activity. Two of these hybrids exhibited pronounced increases in the temperature optima (10 and 20°C), T50 (15 and 19°C), Tm (16.5 and 22.9°C), and extended half life, t1/2 (~240- and 650-fold at 55°C) relative to the mesophilic parent enzyme, and demonstrated improved catalytic efficiency on selected substrates. The successful hybridization strategies were validated experimentally in another GH5 cellulase from Aspergillus nidulans (AnCel5), which demonstrated a similar increase in thermostability. Based on molecular dynamics simulations (MD) of both PoCel5 and TeEgl5A parent enzymes as well as their hybrids, we hypothesize that improved hydrophobic packing of the interface between α2 and α3 is the primary mechanism by which the hybrid enzymes increase their thermostability relative to the mesophilic parent PoCel5.IMPORTANCEThermal stability is an essential property of enzymes in many industrial biotechnological applications, as high temperatures improve bioreactor throughput. Many protein engineering approaches, such as rational design and directed evolution, have been employed to improve the thermal properties of mesophilic enzymes. Structure-based recombination has also been used to fuse TIM-barrel fragments and even fragments from unrelated folds, to generate new structures. However, there are not many research on GH5 cellulases. In this study, two GH5 cellulases, which showed TIM-barrel structure, PoCel5 and TeEgl5A with different thermal properties were hybridized to study the roles of different (βα) motifs. This work illustrates the role that structure guided recombination can play in helping to identify sequence function relationships within GH5 enzymes by supplementing natural diversity with synthetic diversity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3