Abstract
AbstractBackgroundChloroplasts are organelles that conduct photosynthesis in plant and algal cells. Chloroplast genomes code for around 130 genes, and the information they contain is widely used in agriculture and studies of evolution and ecology. Correctly assembling complete chloroplast genomes can be challenging because the chloroplast genome contains a pair of long inverted repeats (10–30 kb). The advent of long-read sequencing technologies should alleviate this problem by providing sufficient information to completely span the inverted repeat regions. Yet, long-reads tend to have higher error rates than short-reads, and relatively little is known about the best way to combine long- and short-reads to obtain the most accurate chloroplast genome assemblies. Using Eucalyptus pauciflora, the snow gum, as a test case, we evaluated the effect of multiple parameters, such as different coverage of long (Oxford nanopore) and short (Illumina) reads, different long-read lengths, different assembly pipelines, and different genome polishing steps, with a view to determining the most accurate and efficient approach to chloroplast genome assembly.ResultsHybrid assemblies combining at least 20x coverage of both long-reads and short-reads generated a single contig spanning the entire chloroplast genome with few or no detectable errors. Short-read-only assemblies generated three contigs representing the long single copy, short single copy and inverted repeat regions of the chloroplast genome. These contigs contained few single-base errors but tended to exclude several bases at the beginning or end of each contig. Long-read-only assemblies tended to create multiple contigs with a much higher single-base error rate, even after polishing. The chloroplast genome of Eucalyptus pauciflora is 159,942 bp, contains 131 genes of known function, and confirms the phylogenetic position of Eucalyptus pauciflora as a close relative of Eucalyptus regnans.ConclusionsOur results suggest that very accurate assemblies of chloroplast genomes can be achieved using a combination of at least 20x coverage of long- and short-reads respectively, provided that the long-reads contain at least ~5x coverage of reads longer than the inverted repeat region. We show that further increases in coverage give little or no improvement in accuracy, and that hybrid assemblies are more accurate than long-read-only or short-read-only assemblies.
Publisher
Cold Spring Harbor Laboratory