Abstract
AbstractCellular metabolism is regulated by enzyme complexes within the mitochondrion, the function of which are sensitive to the prevailing temperature. Such thermal sensitivity, coupled with the observation that population frequencies of mitochondrial haplotypes tend to associate with latitude, altitude or climatic regions across species distributions, led to the hypothesis that thermal selection has played a role in shaping standing variation in the mitochondrial DNA (mtDNA) sequence. This hypothesis, however, remains controversial, and requires evidence that the distribution of haplotypes observed in nature corresponds with the capacity of these haplotypes to confer differences in thermal tolerance. Specifically, haplotypes predominating in tropical climates are predicted to encode increased tolerance to heat stress, but decreased tolerance to cold stress. We present direct evidence for these predictions, using mtDNA haplotypes sampled from the Australian distribution of Drosophila melanogaster. We show that the ability of flies to tolerate extreme thermal challenges is affected by sequence variation across mtDNA haplotypes, and that the thermal performance associated with each haplotype corresponds with its latitudinal prevalence. The haplotype that predominates at low (subtropical) latitudes confers greater resilience to heat stress, but lower resilience to cold stress, than haplotypes predominating at higher (temperate) latitudes. We explore molecular mechanisms that might underlie these responses, presenting evidence that the effects are in part regulated by SNPs that do not change the protein sequence. Our findings suggest that standing variation in the mitochondrial genome can be shaped by thermal selection, and could therefore contribute to evolutionary adaptation under climatic stress.
Publisher
Cold Spring Harbor Laboratory
Reference91 articles.
1. Trends in Genetics;Revisiting classic clines in Drosophila melanogaster in the age of genomics,2015
2. Journal of Cell Biology;Genes encoding Drosophila melanogaster RNA polymerase II general transcription factors: diversity in TFIIA and TFIID components contributes to gene-specific transcriptional regulation,2000
3. Evolution;Genetic Architecture of Metabolic Rate: Environment Specific Epistasis between Mitochondrial and Nuclear Genes in an Insect,2010
4. Unraveling selection in the mitochondrial genome of Drosophila;Genetics,1994