Sensitive detection of LiveEscherichia coliby bacteriophage amplification-coupled immunoassay on the Luminex®MAGPIX instrument

Author:

Mido Tomotaka,Schaffer Eric M.,Dorsey Robert W.,Sozhamannan Shanmuga,Hofmann E. Randal

Abstract

AbstractPhages are natural predators of bacteria and have been exploited in bacterial detection because of their exquisite specificity to their cognate bacterial hosts. In this study, we present a bacteriophage amplification-coupled assay as a surrogate for detecting a bacterium present in a sample. The assay entails detection of progeny phage resulting from infection and subsequent growth inside the bacterium present in suspected samples. This approach reduces testing time and enhances sensitivity to identify pathogens compared to traditional overnight plaque assay. Further, the assay has the ability to discriminate between live and dead cells since phages require live host cells to infect and replicate. To demonstrate its utility, phage MS2 amplification-coupled, bead-based sandwich type immunoassay on the Luminex®MAGPIX instrument forEscherichia colidetection was performed. The assay not only showed live cell discrimination ability but also a limit ofE. colidetection of 1×102cells/mL of live cells after a 3-hour incubation. In addition, the sensitivity of the assay was not impaired in the presence of dead cells. These results demonstrate that bacteriophage amplification-coupled assay can be a rapid live cell detection assay compared to traditional culture methods and a promising tool for quick validation of bacterial inactivation. Combined with the unique multiplex bead chemistry afforded by Luminex®MAGPIX platform, the phage assay can be expanded to be an ultra-deep multiplex assay for the simultaneous detection of multiple pathogens using specific phages directed against the target pathogens.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3