Clinically Important sex differences in GBM biology revealed by analysis of male and female imaging, transcriptome and survival data

Author:

Yang Wei,Warrington Nicole M.,Taylor Sara J.,Carrasco Eduardo,Singleton Kyle W.,Wu Ningying,Lathia Justin D.,Berens Michael E.,Kim Albert H.,Barnholtz-Sloan Jill S.,Swanson Kristin R.,Luo Jingqin,Rubin Joshua B

Abstract

AbstractSex differences in the incidence and outcome of human disease are broadly recognized but in most cases not adequately understood to enable sex-specific approaches to treatment. Glioblastoma (GBM), the most common malignant brain tumor, provides a case in point. Despite well-established differences in incidence, and emerging indications of differences in outcome, there are few insights that distinguish male and female GBM at the molecular level, or allow specific targeting of these biological differences. Here, using a quantitative imaging-based measure of response, we found that temozolomide chemotherapy is more effective in female compared to male GBM patients. We then applied a novel computational algorithm to linked GBM transcriptome and outcome data, and identified novel sex-specific molecular subtypes of GBM in which cell cycle and integrin signaling were identified as the critical determinants of survival for male and female patients, respectively. The clinical utility of cell cycle and integrin signaling pathway signatures was further established through correlations between gene expression and in vitro chemotherapy sensitivity in a panel of male and female patient-derived GBM cell lines. Together these results suggest that greater precision in GBM molecular subtyping can be achieved through sex-specific analyses, and that improved outcome for all patients might be accomplished via tailoring treatment to sex differences in molecular mechanisms.One Sentence SummaryMale and female glioblastoma are biologically distinct and maximal chances for cure may require sex-specific approaches to treatment.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3