Author:
Deveson Ira W.,Madala Bindu Swapna,Blackburn James,Barker Chris,Wong Ted,Barton Kirston M.,Smith Martin A.,Watkins D. Neil,Mercer Tim R.
Abstract
ABSTRACTChirality is a geometric property describing any object that is inequivalent to a mirror image of itself. Due to its 5’-3’ directionality, a DNA sequence is distinct from a mirrored sequence arranged in reverse nucleotide order, and is therefore chiral. A given sequence and its opposing chiral partner sequence share many properties, such as nucleotide composition and sequence entropy. Here we demonstrate that chiral DNA sequence pairs also perform equivalently during molecular and bioinformatic techniques that underpin modern genetic analysis, including PCR amplification, hybridization, whole-genome, target-enriched and nanopore sequencing, sequence alignment and variant detection. Given these shared properties, synthetic DNA sequences that directly mirror clinically relevant and/or analytically challenging regions of the human genome are ideal reference standards for clinical genomics. We show how the addition of chiral DNA standards to patient tumor samples can prevent false-positive and false-negative mutation detection and, thereby, improve diagnosis. Accordingly, we propose that chiral DNA standards can fulfill the unmet need for commutable internal reference standards in precision medicine.
Publisher
Cold Spring Harbor Laboratory