Comparative Biochemical and Structural Analysis of Novel Cellulose Binding Proteins (Tāpirins) from Extremely Thermophilic Caldicellulosiruptor Species

Author:

Lee Laura L.,Hart William S.,Lunin Vladimir V.,Alahuhta Markus,Bomble Yannick J.,Himmel Michael E.,Blumer-Schuette Sara E.,Adams Michael W.W.,Kelly Robert M.

Abstract

AbstractGenomes of extremely thermophilic Caldicellulosiruptor species encode novel cellulose binding proteins, tāpirins, located proximate to the type IV pilus locus. Previously, the C-terminal domain of a tāpirin (Calkro_0844) from Caldicellulosiruptor kronotskyensis was shown to be structurally unique and have a cellulose binding affinity akin to family 3 carbohydrate binding modules (CBM3). Here, full-length and C-terminal versions of tāpirins from Caldicellulosiruptor bescii (Athe_1870), Caldicellulosiruptor hydrothermalis (Calhy_0908), Caldicellulosiruptor kristjanssonii (Calkr_0826), and Caldicellulosiruptor naganoensis (NA10_0869) were produced recombinantly in Escherichia coli and compared to Calkro_0844. All five tāpirins bound to microcrystalline cellulose, switchgrass, poplar, filter paper, but not to xylan. Densitometry analysis of bound protein fractions visualized by SDS-PAGE revealed that Calhy_0908 and Calkr_0826 (from weakly cellulolytic species) associated with the cellulose substrates to a greater extent than Athe_1870, Calkro_0844 and NA10_0869 (from strongly cellulolytic species), perhaps to associate closely with biomass to capture glucans released from lignocellulose by cellulases produced in Caldicellulosiruptor communities. Three-dimensional structures of the C-terminal binding regions of Calhy_0908 and Calkr_0826 were closely related to Calkro_0844, despite the fact that their amino acid sequence identities compared to Calkro_0844 were only 16% and 36%, respectively. Unlike the parent strain, C. bescii mutants lacking the tāpirin genes did not bind to cellulose following short-term incubation, reinforcing the significance of these proteins in cell association with plant biomass. Given the scarcity of carbohydrates in neutral terrestrial hot springs, tāpirins likely help cells scavenge carbohydrates from lignocellulose to support growth and survival of Caldicellulosiruptor species.ImportanceMechanisms by which microorganisms attach to and degrade lignocellulose are important to understand if effective approaches for conversion of plant biomass into fuels and chemicals are to be developed. Caldicellulosiruptor species grow on carbohydrates from lignocellulose at elevated temperatures and have biotechnological significance for that reason. Novel cellulose binding proteins, called tāpirins, are involved in the way Caldicellulosiruptor species interact with microcrystalline cellulose and here additional information about the diversity of these proteins across the genus is provided, including three dimensional structural comparisons.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3