Author:
Branon Tess C.,Bosch Justin A.,Sanchez Ariana D.,Udeshi Namrata D.,Svinkina Tanya,Carr Steven A.,Feldman Jessica L.,Perrimon Norbert,Ting Alice Y.
Abstract
AbstractProtein interaction networks and protein compartmentation underlie every signaling process and regulatory mechanism in cells. Recently, proximity labeling (PL) has emerged as a new approach to study the spatial and interaction characteristics of proteins in living cells. However, the two enzymes commonly used for PL come with tradeoffs – BioID is slow, requiring tagging times of 18-24 hours, while APEX peroxidase uses substrates that have limited cell permeability and high toxicity. To address these problems, we used yeast display-based directed evolution to engineer two mutants of biotin ligase, TurboID and miniTurbo, with much greater catalytic efficiency than BioID, and the ability to carry out PL in cells in much shorter time windows (as little as 10 minutes) with non-toxic and easily deliverable biotin. In addition to shortening PL time by 100-fold and increasing PL yield in cell culture, TurboID enabled biotin-based PL in new settings, including yeast, Drosophila, and C. elegans.
Publisher
Cold Spring Harbor Laboratory
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献