A revised understanding of Tribolium morphogenesis further reconciles short and long germ development

Author:

Benton Matthew A.ORCID

Abstract

AbstractIn Drosophila melanogaster, the germband forms directly on the egg surface and solely consists of embryonic tissue. In contrast, most insect embryos undergo a complicated set of tissue rearrangements to generate a condensed, multi-layered germband. The ventral side of the germband is embryonic, while the dorsal side is thought to be an extraembryonic tissue called the amnion. While this tissue organisation has been accepted for decades, and has been widely reported in insects, its accuracy has not been directly tested in any species. Using live cell tracking and differential cell labelling in the short germ beetle Tribolium castaneum, I show that most of the cells previously thought to be amnion actually give rise to large parts of the embryo. This process occurs via the dorsal-to-ventral flow of cells and contributes to germband extension. In addition, I show that true ‘amnion’ cells in Tribolium originate from a small region of the blastoderm. Together, my findings show that development in the short germ embryos of Tribolium and the long germ embryos of Drosophila is more similar than previously proposed. Dorsal-to-ventral cell flow also occurs in Drosophila during germband extension, and I argue that the flow is driven by a conserved set of underlying morphogenetic events in both species. Furthermore, the revised Tribolium fatemap that I present is far more similar to that of Drosophila than the classic Tribolium fatemap. Lastly, my findings show that there is no qualitative difference between the tissue structure of the cellularised blastoderm and the short/intermediate germ germband. As such, the same tissue patterning mechanisms could function continuously throughout the cellularised blastoderm and germband stages, and easily shift between them over evolutionary time.Author summaryIn many animals, certain groups of cells in the embryo do not directly contribute to adult structures. Instead, these cells generate so-called ‘extra-embryonic tissues’ that support and facilitate development, but degenerate prior to birth/hatching. In most insect species, embryos are described as having two major extra-embryonic tissues; the serosa, which encapsulates the entire embryo and yolk, and the amnion, which covers one side of the embryo. This tissue structure has been widely reported for over a century, but detailed studies on the amnion are lacking. Working in the beetle Tribolium castaneum, I used long-term fluorescent live imaging, cell tracking and differential cell labelling to investigate amnion development. In contrast to our current understanding, I show that most cells previously thought to be amnion actually form large parts of the embryo. In addition, I show how these cells ‘flow’ as a whole tissue and contribute to elongation of the embryo, and how only a relatively small number of cells form the actual amnion. Lastly, I describe how my findings show that despite exhibiting substantial differences in overall structure, embryos of Tribolium and the fruit fly, Drosophila melanogaster, utilise a conserved set of morphogenetic processes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3