Computational investigation of IP3 diffusion

Author:

Guevara Roberto Ornelas,Gil Diana,Voorsluijs Valérie,Dupont GenevièveORCID

Abstract

AbstractInositol 1,4,5-trisphosphate (IP3) plays a key role in calcium signaling. After stimulation, it diffuses from the plasma membrane where it is produced to the endoplasmic reticulum where its receptors are localized. Based on in vitro measurements, IP3 was long thought to be a global messenger characterized by a diffusion coefficient of ~280 µm2s−1. However, in vivo observations revealed that this value does not match with the timing of localized Ca2+ increases induced by the confined release of a non-metabolizable IP3 analog. A theoretical analysis of these data concluded that in intact cells diffusion of IP3 is strongly hindered, leading to a 30- fold reduction of the diffusion coefficient. Here, we performed a new computational analysis of the same observations using a stochastic model of Ca2+ puffs. Our simulations concluded that the value of the effective IP3 diffusion coefficient is close to 100 µm2s−1. Such moderate reduction with respect to in vitro estimations quantitatively agrees with a buffering effect by non-fully bound inactive IP3 receptors. The model also reveals that IP3 diffusion is not much affected by the endoplasmic reticulum, which represents an obstacle to the free displacement of molecules, but can be significantly increased in cells displaying elongated, 1-dimensional like geometries.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3