Characterizing nanometric thin films with far-field light

Author:

Klimovsky Hodaya,Shavit Omer,Julien Carine,Olevsko Ilya,Hamode Mohamed,Abulafia Yossi,Suaudeau Hervé,Armand Vincent,Oheim MartinORCID,Salomon AdiORCID

Abstract

ABSTRACTUltra-thin, transparent films are being used as protective layers on semiconductors, solar cells, as well as for nano-composite materials and optical coatings. Nano-sensors, photonic devices and calibration tools for axial super-resolution microscopies, all rely on the controlled fabrication and analysis of ultra-thin layers. Here, we describe a simple, non-invasive, optical technique for simultaneously characterizing the refractive index, thickness, and homogeneity of nanometric transparent films. In our case, these layers are made of the biomimetic polymer, My-133-MC, having a refractive index of 1.33, so as to approach the cytosol for biological applications. Our technique is based on the detection in the far field and the analysis of supercritical angle fluorescence (SAF), i.e., near-field emission from molecular dipoles located very close to the dielectric interface. SAF emanates from a 5-nm J-aggregate emitter layer deposited on and in contact with the inspected polymer film. Our results compare favorably to that obtained through a combination of atomic force and electron microscopy, surface-plasmon resonance spectroscopy and ellipsometry. We illustrate the value of the approach in two applications, (i), the measurement of axial fluorophore distance in a total internal reflection fluorescence geometry; and, (ii), axial super-resolution imaging of organelle dynamics in a living biological sample, cortical astrocytes, an important type of brain cell. In the later case, our approach removes uncertainties in the interpretation of the nanometric axial dynamics of fluorescently labeled vesicles. Our technique is cheap, versatile and it has obvious applications in microscopies, profilometry and optical nano-metrology.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3