Antibiotic heteroresistance generated by multi-copy plasmids

Author:

Hernandez-Beltran JCR,Rodríguez-Beltrán J,Aguilar-Luviano B,Velez-Santiago J,Mondragón-Palomino O,MacLean RC,Fuentes-Hernández A,Millán A San,Peña-Miller RORCID

Abstract

ABSTRACTHeteroresistance – in which a clonal bacterial population contains a cell subpopulation with higher resistance to antibiotics than the main population – is a growing clinical problem that complicates susceptibility determination and threatens therapeutic success. Despite the high prevalence of heteroresistance in clinical settings, the underlying genetic mechanisms that stably maintain heterogeneous bacterial populations are poorly understood. Using fluorescence microscopy, single-cell microfluidics, and quantitative image analysis, we show that random replication and segregation of multicopy plasmids produce populations of bacterium Escherichia coli MG1655 in which cells with low-and high-plasmid copy numbers stably co-exist. By combining stochastic simulations of a computational model with high-throughput single-cell measurements of blaTEM-1 expression, we show that copy number variability confers the bacterial population with transient resistance to a lethal concentration of a β -lactam antibiotic. Moreover, this surviving, high plasmid copy minority is capable of regenerating a heterogeneous bacterial population with low and high plasmid copy numbers through segregational instability, rapidly alleviating the fitness burden of carrying large numbers of plasmids. Our results provide further support for the tenet that plasmids are more than simple vehicles for horizontal transmission of genetic information between cells, as they can also drive bacterial adaptation in dynamic environments by providing a platform for rapid amplification and attenuation of gene copy number that can accelerate the rate of resistance adaptation and can lead to treatment failure.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3