Cold-induced expression of a truncated Adenylyl Cyclase 3 acts as rheostat to brown fat function

Author:

Khani Sajjad,Topel Hande,Josephrajan Ajeetha,Larsen Bjørk Ditlev Marcher,de Almeida Tavanez Ana Rita Albuquerque,Gaudry Michael JamesORCID,Leyendecker Philipp,Stanic Natasa,Gaziano Isabella,Hansmeier Nils Rouven,Schmidt Elena,Klemm Paul,Vagliano Lara-Marie,Engelhard Christoph Andreas,Nielsen Søren,Jespersen Naja Zenius,Rehimi Rizwan,Gohlke Sabrina,Frommolt Peter,Gnad Thorsten,Rada-Iglesias Alvaro,Pradas-Juni Marta,Schulz Tim Julius,Wunderlich Frank Thomas,Pfeifer Alexander,Jastroch MartinORCID,Wachten DagmarORCID,Kornfeld Jan-WilhelmORCID

Abstract

AbstractPromoting brown adipose tissue (BAT) activity has been recognized as innovative therapeutic approach to improve obesity and metabolic disease. Whilst the molecular circuitry underlying thermogenic activation of BAT is well understood, the processes underlying rheostatic regulation of BAT to maintain homeostasis and avoid excessive energy dissipation remain ill-defined. Increasing cyclic AMP (cAMP) biosynthesis is key for BAT activation. Here, we demonstrate that ADCY3, an adenylyl cyclase whose expression is induced during cold exposure and regulates cAMP homeostasis in thermogenic fat, is dispensable for BAT function in lean mice, but becomes critical during obesity. Furthermore, by combining RNA-seq with epigenomic H3K4me3 profiling, we detected a novel, cold-inducible promoter that generates a 5’ truncated Adcy3-at mRNA isoform, Adcy3-at. Mice lacking only Adcy3-at, but not full-length Adcy3, displayed increased energy expenditure already under lean conditions and were protected against obesity and ensuing metabolic imbalances. Subcellularly, translated ADCY3-AT proteins are retained in the endoplasmic reticulum (ER), did not translocate to the cell membrane, and lacked enzymatic activity. By interacting with ADCY3, ADCY3-AT retained ADCY3 in the ER and, thereby, reduced the plasma membrane pool of ADCYs available for G-protein mediated cAMP synthesis. Thereby, ADCY3-AT acts as a signaling rheostat in BAT, limiting adverse consequences of uncurbed cAMP activity after long-term BAT activation. Adcy3-at induction was driven by a cold-induced, truncated isoform of the transcriptional cofactor PPARGC1A (PPARG Coactivator 1 Alpha, PPARGC1A-AT). Expression of Ppargc1a-at and Adcy3-at are evolutionary conserved, indicating that transcriptional rewiring by commissioning of alternative promoters is key for thermogenic fat function.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3