Functional Neuroligin-2-MDGA1 interactions differentially regulate synaptic GABAARs and cytosolic gephyrin aggregation

Author:

Zeppillo Tommaso,Ali Heba,Wenger Sally,Lopez Murcia Francisco J.,Gideons Erinn,Signorelli Janetti,Schmeisser Michael J.,Wiltfang Jens,Rhee JeongSeop,Brose Nils,Taschenberger HolgerORCID,Krueger-Burg DiljaORCID

Abstract

AbstractThe function of GABAergic synapses is critically shaped by cell adhesion proteins that recruit GABAARs to synapses and mediate transsynaptic signalling, but the synapse-type-specific function of such synaptic adhesion proteins and their mutual interaction remain incompletely understood. A ubiquitous cell adhesion protein at GABAergic synapses is Neuroligin-2 (Nlgn2), which recruits synaptic GABAARs by promoting the assembly of the postsynaptic gephyrin scaffold. While Nlgn2 is present at virtually all GABAergic synapses throughout the forebrain, its loss affects different GABAergic synapse subtypes with different severity, indicating that synapse-specific interactors and synapse-organizer-redundancies define the function of Nlgn2 for a given synapse type. Here we investigated how Nlgn2 function at GABAergic synapses in mouse hippocampal area CA1 is modulated by two recently identified interaction partners, MDGA1 and MDGA2. We show that Nlgn2 and MDGA1 colocalize most prominently in the stratum radiatum (S.R.) of area CA1, and that combined Nlgn2 and MDGA1 deletion causes a layer-specific exacerbation of the loss of gephyrin puncta in layer S.R. seen following Nlgn2 deletion. Intriguingly, combined Nlgn2 and MDGA1 deletion concurrently ameliorates the abnormal cytosolic gephyrin aggregation, the reduction in inhibitory synaptic transmission and the exacerbated anxiety-related behavior seen in Nlgn2 knockout (KO) mice. In contrast, heterozygous deletion of MDGA2 in Nlgn2 KO mice has only minor effects on gephyrin and GABAAR puncta and does not normalize cytosolic gephyrin aggregates, inhibitory synaptic transmission or anxiety-related behavior. Our data indicate that MDGA1, but not MDGA2, modulates Nlgn2 function, primarily by regulating the formation of cytosolic gephyrin aggregates. Given that both Nlgn2 and the MDGA family of proteins have been linked to psychiatric disorders, such as autism and schizophrenia, our data lead to the notion that abnormal gephyrin aggregation may contribute to the pathophysiology of these disorders, and that intervention with gephyrin aggregation could present a novel therapeutic strategy.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3