Cell size scaling laws: a unified theory

Author:

Rollin RomainORCID,Joanny Jean-FrançoisORCID,Sens PierreORCID

Abstract

The dimensions and compositions of cells are tightly regulated by active processes. This exquisite control is embodied in the robust scaling laws relating cell size, dry mass, and nuclear size. Despite accumulating experimental evidence, a unified theoretical framework is still lacking. Here, we show that these laws and their breakdown can be explained quantitatively by three simple, yet generic, physical constraints defining altogether the Pump and Leak model (PLM). Based on estimations, we clearly map the PLM coarse-grained parameters with the dominant cellular events they stem from. We propose that dry mass density homeostasis arises from the scaling between proteins and small osmolytes, mainly amino-acids and ions. Our theory predicts this scaling to naturally fail, both at senescence when DNA and RNAs are saturated by RNA polymerases and ribosomes respectively, and at mitotic entry due to the counterion release following histone tail modifications. We further show that nuclear scaling result from osmotic balance at the nuclear envelope (NE) and a large pool of metabolites, which dilutes chromatin counterions that do not scale during growth.

Publisher

Cold Spring Harbor Laboratory

Reference59 articles.

1. The physics of cell-size regulation across timescales

2. Relevance and Regulation of Cell Density

3. Unravelling nuclear size control

4. Sizing up the nucleus: nuclear shape, size and nuclear-envelope assembly

5. E. Wilson , The karyoplasmic ratio. In The Cell in Development and Heredity, Vol. pp. 727–733 (The MacMillan company, 1925).

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3