Abstract
AbstractThe submergence response in higher plants is highly dependent on the protein stability of group VII ethylene response factors, which are primarily degraded through the oxygen-dependent Cys-Arg branch of the N-degron pathway of targeted proteolysis. Knockout of PRT6, an E3 ligase and a vital component of the N-degron pathway, improves submergence tolerance in Arabidopsis and barley but is associated with side effects such as germination deficiency. In this study, we determined structures of rice and Arabidopsis PRT6-UBR box in complex with various Arg/N-degron related peptides. We identified two highly conserved motifs in the plant PRT6-UBR box, which is responsible for Cys-Arg/N-degron recognition. Structural and mutagenesis studies revealed the importance of two conserved motifs for Cys-Arg/N-degron recognition. The phenotype of Arabidopsis seedlings with PRT6-UBR mutants in these newly identified conserved motifs showed superior submergence survival suggesting that rational manipulation of the PRT6-UBR box can improve flood tolerance. Our results provide an engineering platform for generating crops with improved submergence tolerance.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献