ROBUST AND EFFICIENT ACTIVE GENETICS GENE CONVERSION IN THE RAT AND MOUSE

Author:

Lai Chenyen,Alvarez OscarORCID,Read Kristen,van Fossan Don,Conner Christopher M.,Xu Shannon (Xaing-Ru),Cowley Dale O.ORCID,Gantz ValentinoORCID,Webb David R.,Jarnagin Kurt

Abstract

AbstractThe utility of Active Genetic (AG) gene conversion systems in rats and mice holds great promise for facilitating the production of complex strains harboring multiple humanizing genes. The practical application of such systems requires the identification of a robust, reusable, and highly efficient system. By characterizing twenty-eight different promoter and target site pairs we aimed to define the parameters needed to establish an efficient conversion system in male and female rats and mice. Using three specific meiosis prophase I active promoters to drive Cas9 expression. We studied several variables, including the number of Cas9 target sites, the distance between target sites, the cis versus trans configuration in linked pairs, and the effect of Cas9 copy number.In the rat, three of twelve tested configurations provided efficient AG gene conversion in the 22% - 67% range, and four others catalyzed AG in the 0.7-1% range. The ratDdx4(Vasa) promoter provides higher AG efficiency than theSycp1promoter. In mice, ten of sixteen tested configurations, using theSycp1andpSycp1promoters, provided efficiency in the 0.3% - 3.2% range. In rats, Cas9 expression levels are remarkably well correlated with AG gene conversion efficiency. The rat cis rCyp3A1/rCyp3A2locus was the most successful configuration, with gene conversion efficiencies of 0.7%-67%. This target site has a special property; the two Cas9 target sites are nearly perfectly homologous in the 100 bases around the gRNA target site.Our findings identify key parameters that improve AG efficiency, including the use of two Cas9 target sites, and efficient promoters that drive high levels of Cas9 expression that are correctly timed during gamete development. These findings also uncover the unexpected benefit of high homology at paired gRNA target sites to promote efficiency. We provide new data to guide future efforts to develop yet further improved AG systems.

Publisher

Cold Spring Harbor Laboratory

Reference46 articles.

1. Genetic probing of homologous recombination and nonhomologous end-joining during meiotic prophase in irradiated mouse spermatocytes;Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis,2010

2. Flow cytometric characterization of viable meiotic and postmeiotic cells by Hoechst 33342 in mouse spermatogenesis;Cytometry Part A: the journal of the International Society for Analytical Cytology,2005

3. Gene drives gaining speed;Nature Reviews Genetics,2022

4. Meiosis: the chromosomal foundation of reproduction

5. Transcriptome analysis of highly purified mouse spermatogenic cell populations: gene expression signatures switch from meiotic-to postmeiotic-related processes at pachytene stage;BMC Genomics,2016

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3