Mitochondrial uncouplers impair human sperm motility without altering ATP content

Author:

Skinner Will M.ORCID,Petersen Natalie T.,Unger Bret,Tang ShaogengORCID,Tabarsi Emiliano,Lamm Julianna,Jalalian Liza,Smith James,Bertholet Ambre M.,Xu KeORCID,Kirichok Yuriy,Lishko Polina V.ORCID

Abstract

AbstractSperm motility is necessary for successful fertilization, but there remains controversy about whether human sperm motility is primarily powered by glycolysis or oxidative phosphorylation. To evaluate the plausibility of reducing human sperm mitochondrial ATP production as an avenue for contraceptive development, we treated human sperm with small-molecule mitochondrial uncouplers, which reduce mitochondrial membrane potential by inducing passive proton flow, and evaluated the effects on a variety of physiological processes that are critical for fertilization. We also sought to clarify the subcellular localization of Adenosine Nucleotide Translocator 4 (ANT4), a gamete-specific protein that has been suggested as a contraceptive target. We determined that ANT4 is mitochondrially localized, that induced mitochondrial uncoupling can be partially mediated by the ANT family, and that two uncouplers, Niclosamide Ethanolamine and BAM15, significantly decreased sperm progressive motility. However, these uncouplers did not reduce sperm ATP content or impair other physiological processes, implying that human sperm can rely on glycolysis for ATP production in the absence of functional mitochondria. Thus, since certain mitochondrial uncouplers impair motility through ATP-independent mechanisms, they could be useful ingredients in on-demand, vaginally-applied contraceptives. However, systemically delivered contraceptives that target sperm mitochondria to reduce their ATP production would need to be paired with sperm-specific glycolysis inhibitors.Significance StatementDevelopment of novel contraceptives is critical, since half of all pregnancies are still unplanned, even in developed countries. This high unplanned pregnancy rate contributes to a wide variety of social, environmental, and ecological problems. Impairing human sperm is a way to develop male and unisex contraceptives, but much remains unknown about these unique cells. Here we settle a long-running debate about human sperm metabolism, finding that human sperm can maintain their ATP levels without mitochondrial oxidative phosphorylation. This finding will help focus future contraceptive development efforts. We also identify the potential use of an FDA-approved compound (Niclosamide) as a motility-impairing ingredient in spermicides and correct the misunderstood subcellular localization of an existing contraceptive target, Adenosine Nucleotide Translocator 4.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3