LambdaPP: Fast and accessible protein-specific phenotype predictions

Author:

Olenyi TobiasORCID,Marquet CélineORCID,Heinzinger MichaelORCID,Kröger Benjamin,Nikolova Tiha,Bernhofer MichaelORCID,Sändig Philip,Schütze KonstantinORCID,Littmann MariaORCID,Mirdita MilotORCID,Steinegger MartinORCID,Dallago ChristianORCID,Rost BurkhardORCID

Abstract

AbstractThe availability of accurate and fast Artificial Intelligence (AI) solutions predicting aspects of proteins are revolutionizing experimental and computational molecular biology. The webserverLambdaPPaspires to supersede PredictProtein, the first internet server making AI protein predictions available in 1992. Given a protein sequence as input,LambdaPPprovides easily accessible visualizations of protein 3D structure, along with predictions at the protein level (GeneOntology, subcellular location), and the residue level (binding to metal ions, small molecules, and nucleotides; conservation; intrinsic disorder; secondary structure; alpha-helical and beta-barrel transmembrane segments; signal-peptides; variant effect) in seconds. The structure prediction provided byLambdaPP- leveragingColabFold and computed in minutes- is based onMMseqs2multiple sequence alignments. All other feature prediction methods are based on the pLMProtT5. Queried by a protein sequence,LambdaPPcomputes protein and residue predictions almost instantly for various phenotypes, including 3D structure and aspects of protein function.Accessibility StatementLambdaPP is freely available for everyone to use underembed.predictprotein.org, the interactive results for the case study can be found underhttps://embed.predictprotein.org/o/Q9NZC2. The frontend of LambdaPP can be found on GitHub (github.com/sacdallago/embed.predictprotein.org), and can be freely used and distributed under the academic free use license (AFL-2). For high-throughput applications, all methods can be executed locally via the bio-embeddings (bioembeddings.com) python package, or docker image atghcr.io/bioembeddings/bio_embeddings, which also includes the backend of LambdaPP.Impact StatementWe introduce LambdaPP, a webserver integrating fast and accurate sequence-only protein feature predictions based on embeddings from protein Language Models (pLMs) available in seconds along with high-quality protein structure predictions. The intuitive interface invites experts and novices to benefit from the latest machine learning tools. LambdaPP’s unique combination of predicted features may help in formulating hypotheses for experiments and as input to bioinformatics pipelines.

Publisher

Cold Spring Harbor Laboratory

Reference80 articles.

1. Assessment of hard target modeling in CASP12 reveals an emerging role of alignment-based contact prediction methods;Proteins,2018

2. Ahdritz G , Bouatta N , Kadyan S , Xia Q , Gerecke W , AlQuraishi M. OpenFold. (2021).

3. Alexander-Brett JM , Kober DL (2015) Triggering receptor expressed on myeloid cells 2.

4. Unified rational protein engineering with sequence-based deep representation learning;Nat Methods,2019

5. DeepLoc: prediction of protein subcellular localization using deep learning

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3