Development of a non-invasive method for testicular toxicity evaluation using a novel compact magnetic resonance imaging system

Author:

Yokota SatoshiORCID,Miyaso HidenobuORCID,Hirai ToshinoriORCID,Suga KousukeORCID,Wakayama TomohikoORCID,Taquahashi YuhjiORCID,Kitajima SatoshiORCID

Abstract

AbstractIn non-clinical animal studies for drug discovery, histopathological evaluation is the most powerful tool to assess testicular toxicity. However, histological analysis is extremely invasive; many experimental animals are needed to evaluate changes in the pathology and anatomy of the testes over time. As an alternative, small animal magnetic resonance imaging (MRI) offers a non-invasive methodology to examine testicular toxicity without radiation. The present study demonstrated the suitability of a new, ready-to-use compact MRI platform using a high-field permanent magnet to assist with the evaluation of testicular toxicity. To validate the utility of the MRI platform, male mice were treated with busulfan (40 mg/kg, intraperitoneal injection). Tenty-eight days after treatment, both testes in busulfan-treated and control mice (n = 3/group) were non-invasively scanned in situ by MRI at 1 tesla. On a T1-weighted, 3D gradient-echo MRI sequences (voxel size: 0.23 × 0.23 × 0.50 mm), the total testicular volume in busulfan-treated mice was significantly smaller than in controls. On T1-weighted images, the signal intensity of the testes was significantly higher in busulfan-treated mice than in controls. The mice were sacrificed, and the testes were isolated for histopathological analysis. The weight of the testes in busulfan-treated mice significantly decreased, similar to the results of the non-invasive analysis. Additionally, periodic acid-Schiff stain–positive effusions were observed in the interstitium of the busulfan-treated mouse testes, potentially explaining T1 shortening due to a high concentration of glycoproteinaceous content. The present data demonstrated a rapid evaluation of testicular toxicity in vivo by compact MRI.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3