The SARS-CoV-2 Spike S1 Protein Induces Global Proteomic Changes in ATII-Like Rat L2 Cells that are Attenuated by Hyaluronan

Author:

Mobley James A.,Molyvdas Adam,Kojima Kyoko,Jilling Tamas,Li Jian-LiangORCID,Garantziotis Stavros,Matalon Sadis

Abstract

ABSTRACTThe COVID-19 pandemic continues to impose a major impact on global health and economy since its identification in early 2020, causing significant morbidity and mortality worldwide. Caused by the SARS-CoV-2 virus, along with a growing number of variants that have been characterized to date, COVID-19 has led to 571,198,904 confirmed cases, and 6,387,863 deaths worldwide (as of July 15th, 2022). Despite tremendous advances in our understanding of COVID19 pathogenesis, the precise mechanism by which SARS-CoV2 causes epithelial injury is incompletely understood. In this current study, robust application of global-discovery proteomics applications combined with systems biology analysis identified highly significant induced changes by the Spike S1 protein of SARS-CoV-2 in an ATII-like Rat L2 cells that include three significant network hubs: E2F1, CREB1/ RelA, and ROCK2/ RhoA. Separately, we found that pre-treatment with High Molecular Weight Hyaluronan (HMW-HA), greatly attenuated the S1 effects. Immuno-targeted studies carried out on E2F1 and Rock2/ RhoA induction and kinase-mediated activation, in addition to cell cycle measurements, validated these observations. Taken as a whole, our discovery proteomics and systems analysis workflow, combined with standard immuno-targeted and cell cycle measurements revealed profound and novel biological changes that contribute to our current understanding of both Spike S1 and Hyaluronan biology. This data shows that the Spike S1 protein may contribute to epithelial injury induced by SARS-CoV-2. In addition, our work supports the potential benefit of HMW-HA in ameliorating SARS CoV2 induced cell injury.

Publisher

Cold Spring Harbor Laboratory

Reference73 articles.

1. Hyaluronan Rafts on Airway Epithelial Cells

2. COVID-19 and Toll-Like Receptor 4 (TLR4): SARS-CoV-2 May Bind and Activate TLR4 to Increase ACE2 Expression, Facilitating Entry and Causing Hyperinflammation;Mediators Inflamm,2021

3. Vascular permeability disruption explored in the proteomes of mouse lungs and human microvascular cells following acute bromine exposure;Am J Physiol Lung Cell Mol Physiol,2020

4. Halogen-Induced Chemical Injury to the Mammalian Cardiopulmonary Systems;Physiology (Bethesda),2021

5. Ahmad I , Molyvdas A , Jian MY , Zhou T , Traylor AM , Cui H , Liu G , Song W , Agarwal A , Jilling T , Aggarwal S and Matalon S . AICAR decreases acute lung injury by phosphorylating AMPK and upregulating heme oxygenase-1. Eur Respir J 2021.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3