A 4-bp natural deletion of maize Na+/H+ exchanger gene alters maize salt stress tolerance

Author:

Luo Meijie,Zhao YanxinORCID,Zhang Yunxia,Zhang Ruyang,Cai Manjun,Zhang Panpan,Du Dengxiang,Li Jingna,Xing Jinfeng,Sun Xuan,Duan Minxiao,Lu Xiaoduo,Xue YadongORCID,Liu Ya,Wang Fengge,Lu Baishan,Wang Yuandong,Wang Ronghuan,Song Wei,Zhao Jiuran

Abstract

SummarySoil salinity is a major environmental constraint severely reducing plant growth and crop productivity worldwide. Knowledge of salt tolerance-related genes can facilitate improving crop salt tolerance and alleviating the threat of increasing saline area to world food security. Here, we identified a major locus SALT TOLERANCE 1 (qST1) conferring maize salt tolerance via bulked segregant RNA-Seq (BSR-Seq). qST1 encodes a plasma membrane Na+/H+ exchanger ZmSOS1 which is the ortholog of Arabidopsis thaliana SOS1 gene. In salt-sensitive variety D9H, the natural variation of 4-bp deletion in the coding sequence of ZmSOS1 gene was the causal allele for salt sensitivity. We identified two ethyl methanesulfonate-induced mutants, zmsos1-1 and zmsos1-2, which were sensitive to salt stress and can’t complement salt-sensitive variety under salt stress within an allelism test. Overexpression of ZmSOS1 enhanced maize seedling salt tolerance. ZmSOS1 can increase the salt tolerance of Arabidopsis sos1-1 mutant and can be activated by AtSOS2 and AtSOS3 in yeast cells, suggesting that ZmSOS1 confers salt tolerance through the conserved SOS signaling pathway in maize. The detrimental allele harboring the 4-bp deletion was rarely found in the natural population but appeared in an important heterotic group composed of x1132x-derived inbred lines which have been used widely for breeding dozens of hybrid varieties in China. The 4-bp deletion-based molecular marker has been successfully used to improve salt-sensitive varieties in a backcross and marker-assisted breeding program by screening and purging this deleterious allele.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3