Neuronal Maturation-dependent Nano-Neuro Interaction and Modulation

Author:

Gupta Prashant,Rathi Priya,Gupta Rohit,Baldi Harsh,Coquerel Quentin,Debnath Avishek,Derami Hamed Gholami,Raman BaranidharanORCID,Singamaneni Srikanth

Abstract

AbstractNanotechnology-enabled neuromodulation, a rapidly growing technique, is a promising minimally-invasive tool in neuroscience and engineering for both fundamental studies as well as clinical applications. However, the nano-neuro interactions at different stages of maturation of a neural network and its implications on the nano-neuromodulation remain unclear. Here, we report heterogeneous to homogenous transformation of neuromodulation in a progressively maturing neural network. Utilizing plasmonic fluors as ultrabright fluorescent nanolabels, we reveal that negative surface charge of the nanoparticles renders selective nano-neuro interaction with a strong correlation between the maturation stage of the individual neurons in the neural network and the density of the nanoparticles bound on the neurons. In stark contrast to homogeneous neuromodulation in a mature neural network reported so far, the maturation-dependent density of the nanoparticles bound to neurons in a developing neural network resulted in a heterogeneous optical neuromodulation (i.e., simultaneous excitation and inhibition of neural network activity). This study advances our understanding of nano-neuro interactions and nano-neuromodulation with potential applications in minimally-invasive technologies for treating neuronal disorders in parts of mammalian brain where neurogenesis persists throughout aging.

Publisher

Cold Spring Harbor Laboratory

Reference65 articles.

1. An atlas of nano-enabled neural interfaces;Nature Nanotechnology,2019

2. Nanomaterials-assisted thermally induced neuromodulation;Biomedical Engineering Letters,2021

3. Insights into the mechanisms of deep brain stimulation;Nature Reviews Neurology,2017

4. Glial responses to implanted electrodes in the brain;Nature biomedical engineering,2017

5. Advances in nanowire bioelectronics;Reports on Progress in Physics,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Plasmon-Enhanced Expansion Microscopy;Nano Letters;2023-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3