Simplification of free-running cardiac magnetic resonance by respiratory phase using principal component analysis

Author:

Shammi Ummul Afia,Luan Zhijian,Xu Jia,Hamid Aws,Flors Lucia,Cassani Joanne,Altes Talissa A.,Thomen Robert P.,Van Doren Steven R.ORCID

Abstract

AbstractCardiac magnetic resonance imaging (CMR) provides many cardiac functional insights. The reliance of standard cine CMR upon breath holds is not feasible for some patients. Its process of combining multiple heartbeats is unsuited to arrhythmias. Real-time cine methods sidestep these problems but can introduce respiratory displacement of the heart. To aid CMR acquisitions during breathing, we developed post-processing software to diminish the effects of respiratory displacement of the heart. It uses principal component analysis to resolve respiratory motions from cardiac cycles in the dynamic image. The software groups heartbeats from expiration and inspiration to decrease the appearance of respiratory motion. The effects of respiratory motion and such motion correction were evaluated on short-axis views (acquired with compressed sensing) of 11 healthy subjects and 8 cardiac patients. The smallest correlation coefficients between end-systolic frames of the original dynamic scans averaged 0.79. After segregation of cardiac cycles by respiratory phase, the mean correlation coefficients between cardiac cycles were 0.94 ± 0.03 at end-expiration and 0.90 ± 0.08 at end-inspiration. The improvements in correlation coefficients were significant in paired t-tests, i.e., P ≤ 0.01 for healthy subjects and P ≤ 0.001 for heart patients at end-expiration. Two expert cardiothoracic radiologists, blinded to the processing, assessed the dynamic images in terms of blood-myocardial contrast, endocardial interface definition, and motion artifacts. Clinical assessment preferred cardiac cycles during end-expiration, which maintained or enhanced scores in 90% of healthy subjects and 83% of the heart patients. Performance remained high in a case of arrhythmia and irregular breathing. Heartbeats collected from end-expiration reliably mitigated respiratory motion when the new software was applied to DICOM files from real-time acquisitions.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3