Improved model quality assessment using sequence and structural information by enhanced deep neural networks

Author:

Liu Jun,Zhao Kailong,Zhang Guijun

Abstract

AbstractProtein model quality assessment plays an important role in protein structure prediction, protein design, and drug discovery. In this work, DeepUMQA2, a substantially improved version of DeepUMQA for protein model quality assessment, is proposed. First, sequence features containing protein co-evolution information and structural features reflecting family information are extracted to complement model-dependent features. Second, a novel backbone network based on triangular multiplication update and axial attention mechanism is designed to enhance information exchange between inter-residue pairs. On CASP13 and CASP14 datasets, the performance of DeepUMQA2 increases by 20.5% and 20.4% compared with DeepUMQA, respectively (measured by top 1 loss). Moreover, on the three-month CAMEO dataset (March 11 to June 04, 2022), DeepUMQA2 outperforms DeepUMQA by 15.5% (measured by local AUC0,0.2) and ranks first among all competing server methods in CAMEO blind test. Experimental results show that DeepUMQA2 outperforms state-of-the-art model quality assessment methods, such as ProQ3D-LDDT, ModFOLD8, DeepAccNet, Atom_ProteinQA, and QMEAN3.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3