ARAX: a graph-based modular reasoning tool for translational biomedicine

Author:

Glen Amy K.ORCID,Ma Chunyu,Mendoza Luis,Womack Finn,Wood E. C.,Sinha Meghamala,Acevedo Liliana,Kvarfordt Lindsey G.,Peene Ross C.,Liu ShaopengORCID,Hoffman Andrew S.,Roach Jared C.,Deutsch Eric W.,Ramsey Stephen A.,Koslicki DavidORCID

Abstract

AbstractMotivationWith the rapidly growing volume of knowledge and data in biomedical databases, improved methods for knowledge-graph-based computational reasoning are needed in order to answer translational questions. Previous efforts to solve such challenging computational reasoning problems have contributed tools and approaches, but progress has been hindered by the lack of an expressive analysis workflow language for translational reasoning and by the lack of a reasoning engine—supporting that language—that federates semantically integrated knowledge-bases.ResultsWe introduce ARAX, a new reasoning system for translational biomedicine that provides a web browser user interface and an application programming interface. ARAX enables users to encode translational biomedical questions and to integrate knowledge across sources to answer the user’s query and facilitate exploration of results. For ARAX, we developed new approaches to query planning, knowledge-gathering, reasoning, and result ranking and dynamically integrate knowledge providers for answering biomedical questions. To illustrate ARAX’s application and utility in specific disease contexts, we present several use-case examples.Availability and ImplementationThe source code and technical documentation for building the ARAX server-side software and its built-in knowledge database are freely available online (https://github.com/RTXteam/RTX). We provide a hosted ARAX service with a web browser interface at arax.rtx.ai and a web application programming interface (API) endpoint at arax.rtx.ai/api/arax/v1.3/ui/.Contactdmk333@psu.edu

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3