Geometric differences in the ribosome exit tunnel impact the escape of small nascent proteins

Author:

Yu Shiqi,Srebnik SimchaORCID,Duc Khanh DaoORCID

Abstract

AbstractThe exit tunnel is the sub-compartment of the ribosome that contains the nascent polypeptide chain and as such, is involved in various vital functions, including regulation of translation and protein folding. As the geometry of the tunnel shows important differences across species, we focus on key geometrical features of eukaryote and prokaryote tunnels. We used a simple coarse-grained molecular dynamics model to study the role of the tunnel geometry in the post-translational escape of short proteins (sORF’s), with lengths ranging from 6 to 56 amino acids. We found that the probability of escape for prokaryotes is one for all but the 12-mer chains. Moreover, proteins of this length have an extremely low escape probability in eukaryotes. A detailed examination of the associated single trajectories and energy profiles showed that these variations can be explained by the interplay between the protein configurational space and the confinement effects introduced by the constriction sites of the ribosome exit tunnel. For certain lengths, either one or both of the constriction sites can lead to the trapping of the protein in the “pocket” regions preceding these sites. As the distribution of existing sORF’s indicate some bias in length that is consistent with our findings, we finally suggest that the constraints imposed by the tunnel geometry have impacted the evolution of sORF’s.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3