Identifying predictors of survival in patients with leukemia using single-cell mass cytometry and machine learning

Author:

Kleftogiannnis DimitriosORCID,Tislevoll Benedicte SjoORCID,Hellesøy MonicaORCID,Gullaksen Stein-Erik,van der Meer Nisha,Griessinger Emmanuel,Motzfeldt Inga K. F.,Fagerholt Oda,Lenartova Andrea,Fløisand Yngvar,Schuringa Jan JacobORCID,Gjertsen Bjørn ToreORCID,Jonassen IngeORCID

Abstract

AbstractThe use of single-cell profiling of phenotypes is suggested to inform about chemoresistance and lack of treatment response in cancer. Mass cytometry by time-of-flight (CyTOF) allows high throughput multiparametric analysis at the single-cell level to perform for in-depth characterisation of heterogeneity in leukemia. However, computational identification of cell populations from CyTOF, and utilisation of single-cell data for biomarker discoveries is challenging. Here, we deployed a machine learning-based framework that enables automatic cell population annotation, and systematic exploration of interactions between signalling proteins in a CyTOF antibody panel. We applied the developed framework to analyse a cohort of 45 leukemia patients. We investigated associations between the cellular composition and clinicopathological and genetic features, and reported salient signalling interactions of Multipotent Progenitor-like leukemia cells that were sufficient to predict short-term survival at time of diagnosis. Our findings confirmed that targeting cell type-specific signalling interactions in leukemia might improve existing patient stratification methods with the potential to inform early about more precise treatment options.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3