Design, implementation, and functional validation of a new generation of microneedle 3D high-density CMOS multi-electrode array for brain tissue and spheroids

Author:

Mapelli LisaORCID,Dubochet Olivier,Tedesco Mariateresa,Sciacca Giacomo,Ottaviani Alessandra,Monteverdi Anita,Battaglia Chiara,Tritto Simona,Cardot Francis,Surbled Patrick,Schildknecht Jan,Gandolfo Mauro,Imfeld Kilian,Cervetto Chiara,Marcoli Manuela,D’Angelo EgidioORCID,Maccione Alessandro

Abstract

AbstractIn the last decades, planar multi-electrode arrays (MEAs) have been widely used to record activity from in vitro neuronal cell cultures and tissue slices. Though successful, this technique bears some limitations, particularly relevant when applied to three-dimensional (3D) tissue, such as brain slices, spheroids or organoids. For example, planar MEAs signals are informative on just one side of a 3D-organized structure. This limits the interpretation of the results in terms of network functions in a complex structured and hyperconnected brain tissue. Moreover, the side in contact with the MEAs often shows lower oxygenation rates and related vitality issues. To overcome these problems, we empowered a CMOS high-density multi-electrode array (HD-MEA) with thousands of microneedles (μneedles) of 65-90 μm height, able to penetrate and record in-tissue signals, providing for the first time a 3D HD-MEA chip. We propose a CMOS-compatible fabrication process to produce arrays of μneedles of different widths mounted on large pedestals to create microchannels underneath the tissue. By using cerebellar and cortico-hippocampal slices as a model, we show that the μneedles efficiently penetrate the 3D tissue while the microchannels allow the flowing of maintenance solutions to increase tissue vitality in the recording sites. These improvements are reflected by the increase in electrodes sensing capabilities, the number of sampled neuronal units (compared to matched planar technology), and the efficiency of compound effects. Importantly, each electrode can also be used to stimulate the tissue with optimal efficiency due to the 3D structure. Furthermore, we demonstrate how the 3D HD-MEA can efficiently penetrate and get outstanding signals from in vitro 3D cellular models as brain spheroids. In conclusion, we describe a new recording device characterized by the highest spatio-temporal resolution reported for a 3D MEA and significant improvements in the quality of recordings, with a high signal-to-noise ratio and improved tissue vitality. The applications of this game-changing technique are countless, opening unprecedented possibilities in the neuroscience field and beyond.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3