Human photoreceptor cell transplants integrate into human retina organoids

Author:

Wagner FelixORCID,Carrera Roberto,Kurth Thomas,Michalakis Stylianos,Naumann Ronald,Zuzic Marta,Neumann Katrin,Gourau OlivierORCID,Busskamp Volker,Karl Mike O.

Abstract

AbstractCell transplantation is a promising therapeutic approach to recover loss of neurons and vision in patient retinas. So far, human photoreceptor transplants restored some visual function in degenerating mouse retina. Whether retinal cell transplants also integrate into human retina, and how to optimize this for different pathologies are still unknown. Here, we sought to determine if human retina organoids generated from pluripotent stem cells might assist cell replacement therapy development in a human-to-human setting. Models for intra- and subretinal cell transplantation strategies were explored: Photoreceptor donor cells carrying a transgenic fluorescent reporter were enriched from acutely dissociated human retinal organoids. Donor cells were precisely transplanted by microinjection into the retina of host organoids, but high cell numbers might require multiple injections posing potential damage. Alternatively, donor cells were transplanted in large numbers by placing them in subretinal-like contact to the apical organoid surface. Using postmitotic retinal organoids (age >170-days) as a source for donor cells and as hosts, we show that six weeks after subretinal-like transplantation, large clusters of photoreceptors reproducibly incorporate into the host retina. Transplanted clusters frequently are located within or across the host photoreceptor layer, include cone and rod photoreceptors, and become infiltrated by cell processes of host Müller glia, indicative of structural integration. Histological and ultrastructural data of virally-labeled photoreceptor transplants show characteristic morphological and structural features of polarized photoreceptors: inner segments and ribbon synapses, and donor-host cell contacts develop contributing to the retinal outer limiting membrane. These results demonstrate that human retinal organoids provide a preclinical research system for cell replacement therapies.Graphical abstract

Publisher

Cold Spring Harbor Laboratory

Reference73 articles.

1. Trends in prevalence of blindness and distance and near vision impairment over 30 years: an analysis for the Global Burden of Disease Study;Collaborators G 2019 B and VI;Lancet Global Heal,2020

2. Botto C , Rucli M , Tekinsoy MD , et al (2021) Early and late stage gene therapy interventions for inherited retinal degenerations. Prog Retin Eye Res 100975. https://doi.org/10.1016/j.preteyeres.2021.100975

3. Transplantation of cultured human retinal cells to monkey retina;Anais Da Acad Brasileira De Ciências,1984

4. Intraocular retinal transplants;Invest Ophth Vis Sci,1985

5. Transplantation of Human Embryonic Stem Cell-Derived Photoreceptors Restores Some Visual Function in Crx-Deficient Mice

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3