Optical O2 sensors also respond to redox active molecules commonly secreted by bacteria

Author:

Flamholz Avi I.,Saccomano Samuel,Cash KevinORCID,Newman Dianne K.ORCID

Abstract

AbstractFrom a metabolic perspective, molecular oxygen (O2) is arguably the most significant constituent of Earth’s atmosphere. Nearly every facet of microbial physiology is sensitive to the presence and concentration of O2, which is the most favorable terminal electron acceptor used by biological organisms and also a dangerously reactive oxidant. As O2 has such sweeping implications for physiology, researchers have developed diverse approaches to measure O2 concentrations in natural and laboratory settings. Recent improvements to phosphorescent O2 sensors piqued our interest due to the promise of optical measurement of spatiotemporal O2 dynamics. However, we found that our preferred bacterial model, Pseudomonas aeruginosa PA14, secretes more than one molecule that quenches such sensors, complicating O2 measurements in PA14 cultures and biofilms. Assaying supernatants from cultures of 9 bacterial species demonstrated that this phenotype is common: all supernatants quenched a soluble O2 probe substantially. Phosphorescent O2 probes are often embedded in solid support for protection, but an embedded probe called O2NS was quenched by most supernatants as well. Measurements using pure compounds indicated that quenching is due to interactions with redox-active small molecules including phenazines and flavins. Uncharged and weakly-polar molecules like pyocyanin were especially potent quenchers of O2NS. These findings underscore that optical O2 measurements made in the presence of bacteria should be carefully controlled to ensure that O2, and not bacterial secretions, is measured, and motivate the design of custom O2 probes for specific organisms to circumvent sensitivity to redox-active metabolites.ImportanceWhen they are closely-packed, as in biofilms, colonies, and soils, microbes can consume O2 faster than it diffuses. As such, O2 concentrations in natural environments can vary greatly over time and space, even on the micrometer scale. Wetting soil, for example, slows O2 diffusion higher in the soil column, which, in concert with microbial respiration, greatly diminishes [O2] at depth. Given that variation in [O2] has outsized implications for microbial physiology, there is great interest in measuring the dynamics of [O2] in microbial cultures and biofilms. We demonstrate that certain classes of bacterial metabolites frustrate optical measurement of [O2] with phosphorescent sensors, but also that some species (e.g. E. coli) do not produce problematic secretions under the conditions tested. Our work therefore offers a strategy for identifying organisms and culture conditions in which optical quantification of spatiotemporal [O2] dynamics with current sensors is feasible.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3