DNA damage leads to microtubule stabilisation through an increase in Golgi-derived microtubules

Author:

Venkataravi Aishwarya,Lahiri MayurikaORCID

Abstract

AbstractThe site of nucleation strongly determines microtubule organisation and dynamics. The centrosome is a primary site for microtubule nucleation and organisation in most animal cells. In recent years, the Golgi apparatus has emerged as a site of microtubule nucleation and stabilisation. The microtubules originating from Golgi are essential for maintaining Golgi integrity post-Golgi trafficking, establishing cell polarity and enabling cell motility. Although the mechanism of nucleation and functional relevance of the Golgi-nucleated microtubule is well established, its regulation needs to be better studied. In this study, we report that DNA damage leads to aberrant Golgi structure and function accompanied by reorganisation of the microtubule network. Characterisation of microtubule dynamics post DNA damage showed the presence of a stable pool of microtubules resistant to depolymerisation by nocodazole and enriched in acetylated tubulin. Investigation of the functional association between Golgi dispersal and microtubule stability revealed that the Golgi elements were distributed along the acetylated microtubules. Microtubule regrowth assays showed an increase in Golgi-derived microtubule post DNA damage. Interestingly, reversal of Golgi dispersal reduces microtubule stabilisation. Altered intracellular trafficking resulting in mislocalisation of cell-cell junction proteins was observed post DNA damage. We propose that the increase in stable microtubules deregulates intracellular trafficking, resulting in cell polarity changes. This study would thus be the first to demonstrate the link between Golgi dispersal and microtubule reorganisation orchestrating changes in cell polarity.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3