Recovery of forearm and fine digit function after chronic spinal cord injury by simultaneous blockade of inhibitory matrix CSPG production and the receptor PTPσ

Author:

Milton Adrianna J.,Silver Daniel J.,Kwok Jessica,McClellan Jacob,Warren Philippa M.ORCID,Silver Jerry

Abstract

AbstractSpinal cord injuries, for which there are limited effective clinical treatments, result in enduring paralysis and hypoesthesia due, in part, to the inhibitory microenvironment that develops and limits regeneration/sprouting, especially during chronic stages. Recently, we discovered that targeted enzymatic modulation of the potently inhibitory chondroitin sulfate proteoglycan (CSPG) component of the extracellular and perineuronal net (PNN) matrix via Chondroitinase ABC (ChABC) can rapidly restore robust respiratory function to the previously paralyzed hemi-diaphragm after remarkably long times post-injury (up to 1.5 years) following a cervical level 2 lateral hemi-transection. Importantly, ChABC treatment at cervical level 4 in this chronic model also elicited rapid, albeit modest, improvements in upper arm function. In the present study, we sought to further optimize and elucidate the capacity for nerve sprouting and/or regeneration to restore gross as well as fine motor control of the forearm and digits at lengthy chronic stages post injury. However, instead of using ChABC, we utilized a novel and more clinically relevant systemic, non-invasive combinatorial treatment strategy designed to both reduce and overcome inhibitory CSPGs simultaneously and spatially extensively. Following a three-month upper cervical spinal hemi-lesion using adult female Sprague Dawley rats, we show that the combined treatment has a profound effect on functional recovery of the chronically paralyzed forelimb and paw, specifically during walking as well as precision movements of the digits. Our exciting pre-clinical findings will begin to enhance our understanding of the basic mechanisms underlying functionally beneficial regenerative events occurring at chronic injury stages for clinically relevant translational benefits.Significance statementOvercoming the persistent axon inhibitory environment following a functionally debilitating incomplete spinal cord lesion has long proven to be an elusive dilemma, especially months to years after the initial spinal injury. Current therapeutic and rehabilitative techniques for patients suffering from chronic cervical spinal insults minimally, if at all, address this structural hindrance and support limited return of crucial behaviors such as voluntary use of the arms and hands. Our investigation into the behavioral and anatomical consequences of systemically perturbing the high-affinity binding interaction between the receptor PTPσ and the extracellular chondroitin sulfate proteoglycans highlight an underlying barrier to the restoration of forelimb/paw walking and eating behavior 12-weeks after a cervical spinal hemi-transection.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3