Microglia and astrocytes differentially endocytose exosomes facilitating alpha-Synuclein endolysosomal sorting

Author:

Pantazopoulou M.ORCID,Alexaki A.ORCID,Lamprokostopoulou A.ORCID,Delis A.,Coens A.,Melki R.ORCID,Pagakis S.N.,Stefanis L.ORCID,Vekrellis K.ORCID

Abstract

AbstractExosomes have emerged as key players in cell-to-cell communication in both physiological and pathological processes in the Central Nervous System (CNS). Thus far, the intracellular pathways involved in uptake and trafficking of exosomes within different cell types of the brain (microglia and astrocytes) are poorly understood. In our study, the endocytic processes and subcellular sorting of exosomes were investigated in primary glial cells, particularly linked with the exosome-associated α-synuclein (α-syn) transmission. Mouse microglia and astrocytic primary cultures were incubated with DiI-stained mouse brain-derived exosomes. The internalization and trafficking pathways were analysed in cells treated with pharmacological reagents that block the major endocytic pathways. Brain-derived exosomes were internalized by both glial cell types; however, uptake was more efficient in microglia than in astrocytes. Colocalization of exosomes with early and late endocytic markers (Rab5, Lamp1) indicated that exosomes are sorted to endolysosomes for subsequent processing. Treatment with Cytochalasin D, that blocks actin-dependent phagocytosis and/or macropinocytosis, inhibited exosome entry into glial cells, whereas treatment with inhibitors that strip off cholesterol from the plasma membrane, induced uptake, however differentially altered endosomal sorting. Exosome-associated fibrillar α-Syn was efficiently internalized and detected in Rab5- and Lamp1-positive compartments within microglia. Our study strongly suggests that exosomes enter glial cells through an actin network-dependent endocytic pathway and are sorted to endolysosomes for subsequent processing. Further, brain-derived exosomes are capable of mediating cell-to-glia transmission of pathological α-Syn that is also targeted to the endosomal pathway, suggesting a possible beneficial role in microglia-mediated clearance of toxic protein aggregates, present in numerous neurodegenerative diseases.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Brain clearance of protein aggregates: a close-up on astrocytes;Molecular Neurodegeneration;2024-01-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3