ATG9 vesicles comprise the seed membrane of mammalian autophagosomes

Author:

Olivas Taryn J.ORCID,Wu Yumei,Yu Shenliang,Luan Lin,Choi Peter,Nag Shanta,De Camilli PietroORCID,Gupta Kallol,Melia Thomas J.ORCID

Abstract

AbstractDuring autophagosome biogenesis, the incorporation of transmembrane proteins into the expanding phagophore is not readily observed. In addition, the membrane surface area of the organelle expands rapidly, while the volume of the autophagosome is kept low. Several recent studies have suggested a model of membrane expansion that explains how these attributes are maintained. The autophagosome expands predominantly through the direct protein-mediated transfer of lipids through the lipid transfer protein ATG2. As these lipids are only introduced into the cytoplasmic-facing leaflet of the expanding phagophore, full membrane growth also requires lipid scramblase activity. ATG9 has been demonstrated to harbor scramblase activity and is essential to autophagosome formation, however if and when it is integrated into mammalian autophagosomes remains unclear. Here we show that in the absence of lipid transport, ATG9 vesicles are already fully competent to collect proteins normally found on mature autophagosomes, including LC3-II. Further, through the novel use of styrene-maleic acid lipid particles as a nanoscale interrogation of protein organization on intact membranes, we show that ATG9 is fully integrated in the same membranes as LC3-II, even on maturing autophagosomes. The ratios of these two proteins at different stages of maturation demonstrate that ATG9 proteins are not continuously integrated, but rather are present on the seed vesicles only and become diluted in the rapidly expanding autophagosome membrane. Thus, ATG9 vesicles are the seed membrane from which mammalian autophagosomes form.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3