1,000 ancient genomes uncover 10,000 years of natural selection in Europe

Author:

Le Megan K.ORCID,Smith Olivia S.,Akbari Ali,Harpak ArbelORCID,Reich DavidORCID,Narasimhan Vagheesh M.ORCID

Abstract

AbstractAncient DNA has revolutionized our understanding of human population history. However, its potential to examine how rapid cultural evolution to new lifestyles may have driven biological adaptation has not been met, largely due to limited sample sizes. We assembled genome-wide data from 1,291 individuals from Europe over 10,000 years, providing a dataset that is large enough to resolve the timing of selection into the Neolithic, Bronze Age, and Historical periods. We identified 25 genetic loci with rapid changes in frequency during these periods, a majority of which were previously undetected. Signals specific to the Neolithic transition are associated with body weight, diet, and lipid metabolism-related phenotypes. They also include immune phenotypes, most notably a locus that confers immunity to Salmonella infection at a time when ancient Salmonella genomes have been shown to adapt to human hosts, thus providing a possible example of human-pathogen co-evolution. In the Bronze Age, selection signals are enriched near genes involved in pigmentation and immune-related traits, including at a key human protein interactor of SARS-CoV-2. Only in the Historical period do the selection candidates we detect largely mirror previously-reported signals, highlighting how the statistical power of previous studies was limited to the last few millennia. The Historical period also has multiple signals associated with vitamin D binding, providing evidence that lactase persistence may have been part of an oligogenic adaptation for efficient calcium uptake and challenging the theory that its adaptive value lies only in facilitating caloric supplementation during times of scarcity. Finally, we detect selection on complex traits in all three periods, including selection favoring variants that reduce body weight in the Neolithic. In the Historical period, we detect selection favoring variants that increase risk for cardiovascular disease plausibly reflecting selection for a more active inflammatory response that would have been adaptive in the face of increased infectious disease exposure. Our results provide an evolutionary rationale for the high prevalence of these deadly diseases in modern societies today and highlight the unique power of ancient DNA in elucidating biological change that accompanied the profound cultural transformations of recent human history.

Publisher

Cold Spring Harbor Laboratory

Reference121 articles.

1. Gene-culture coevolution in the age of genomics

2. Richerson, P. J. & Boyd, R. Not by Genes Alone : How Culture Transformed Human Evolution. (University of Chicago Press, 2008).

3. Armelagos, G. & Cohen, M. Paleopathology at the Origins of Agriculture. (1984).

4. Genome-wide patterns of selection in 230 ancient Eurasians

5. Population genomics of the Viking world;Nature,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3