The cognitive basis of intracranial self-stimulation of midbrain dopamine neurons

Author:

Millard Samuel J.,Hoang Ivy B.,Greer Zara,O’Connor Shayna L.,Wassum Kate M.,James Morgan H.,Barker David J.,Sharpe Melissa J.

Abstract

AbstractRecently there has been a reckoning in the dopamine field. This has suggested that the dopamine prediction error may function as a teaching signal, without endowing preceding events with value. We studied the cognitive basis of intracranial self-stimulation (ICSS), a setting where dopamine appears to be valuable. Physiological frequencies seen during reinforcement learning did not support robust ICSS or promote behavior that would indicate the stimulation was represented as a meaningful reward in a specific or general sense. This was despite demonstrating that this same physiologically-relevant signal could function as a teaching signal. However, supraphysiological frequencies supported robust ICSS where the stimulation was represented as a specific sensory event, which acted as a goal to motivate behavior. This demonstrates that dopamine neurons only support ICSS at supraphysiological frequencies, and in a manner that does not reflect our subjective experience with endogenous firing of dopamine neurons during reinforcement learning.One sentence summaryDopamine neurons only support ICSS at supraphysiological frequencies and in a manner not reflecting dopamine’s role in learning.

Publisher

Cold Spring Harbor Laboratory

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3