Kokiri: Random-Forest-Based Comparison and Characterization of Cohorts

Author:

Eckelt KlausORCID,Adelberger PatrickORCID,Bauer Markus J.ORCID,Zichner ThomasORCID,Streit MarcORCID

Abstract

AbstractWe propose an interactive visual analytics approach to characterizing and comparing patient subgroups (i.e., cohorts). Despite having the same disease and similar demographic characteristics, patients respond differently to therapy. One reason for this is the vast number of variables in the genome that influence a patient’s outcome. Nevertheless, most existing tools do not offer effective means of identifying the attributes that differ most, or look at them in isolation and thus ignore combinatorial effects. To fill this gap, we present Kokiri, a visual analytics approach that aims to separate cohorts based on user-selected data, ranks attributes by their importance in distinguishing between cohorts, and visualizes cohort overlaps and separability. With our approach, users can additionally characterize the homogeneity and outliers of a cohort. To demonstrate the applicability of our approach, we integrated Kokiri into the Coral cohort analysis tool to compare and characterize lung cancer patient cohorts.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3