Abstract
AbstractIn their environment, cells have to cope with mechanical stresses constantly. Among those, nanoscale deformations of plasma membrane induced by substrate nanotopography are now largely accepted as a biophysical stimulus influencing cell behaviour and function. However, the mechanotransduction cascades involved and their precise molecular effects on cellular physiology are still poorly understood. Here, using homemade fluorescent nanostructured cell culture surfaces, we explored the role of Bin/Amphiphysin/Rvs (BAR) domain proteins as mechanosensors of plasma membrane geometry. Our data reveal that distinct subsets of BAR proteins bind to plasma membrane deformations in a membrane curvature radius-dependent manner. Furthermore, we show that membrane curvature promotes the formation of dynamic actin structures mediated by the Rho GTPase CDC42, the F-BAR protein CIP4 and the presence of PI(4,5)P2, independently of clathrin. In addition, these actin-enriched nanodomains can serve as platforms to regulate receptor signaling as they appear to contain Interferon γ receptor (IFNγ-R) and to lead to the partial inhibition of IFNγ-induced Janus-activated tyrosine kinase/signal transducer and activator of transcription (JAK/STAT) signaling.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献