Identifiability and inference of phylogenetic birth-death models

Author:

Legried BrandonORCID,Terhorst JonathanORCID

Abstract

AbstractRecent theoretical work on phylogenetic birth-death models offers differing viewpoints on whether they can be estimated using lineage-through-time data. Louca and Pennell (2020) showed that the class of models with continuously differentiable rate functions is nonidentifiable: any such model is consistent with an infinite collection of alternative models, which are statistically indistinguishable regardless of how much data are collected. Legried and Terhorst (2022a) qualified this grave result by showing that identifiability is restored if only piecewise constant rate functions are considered.Here, we contribute new theoretical results to this discussion, in both the positive and negative directions. Our main result is to prove that models based on piecewise polynomial rate functions of any order and with any (finite) number of pieces are statistically identifiable. In particular, this implies that spline-based models with an arbitrary number of knots are identifiable. The proof is simple and self-contained, relying mainly on basic algebra. We complement this positive result with a negative one, which shows that even when identifiability holds, rate function estimation is still a difficult problem. To illustrate this, we prove some rates-of-convergence results for hypothesis testing using birth-death models. These results are information-theoretic lower bounds which apply to all potential estimators.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Alternate histories in macroevolution;Proceedings of the National Academy of Sciences;2023-02-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3