Abstract
AbstractAcoustic properties of biomaterials and engineered tissues reflect their structure and cellularity. High-frequency ultrasound (US) can non-invasively characterize and monitor these properties with sub-millimetre resolution. We present an approach to estimate the acoustic properties of cell-laden hydrogels that accounts for frequency-dependent effects of attenuation in coupling media, hydrogel thickness, and interfacial transmission/reflection coefficients of US waves, all of which can bias attenuation estimates. Cell-seeded fibrin hydrogel disks were raster-scanned using a 40 MHz US transducer. Thickness, speed of sound, acoustic impedance, and acoustic attenuation coefficients were determined from the difference in the time-of-flight and ratios of the magnitudes of US signals, interfacial transmission/reflection coefficients, and acoustic properties of the coupling media. With this approach, hydrogel thickness was accurately measured by US, with excellent agreement to confocal microscopy (r2 = 0.97). Accurate thickness measurement enabled acoustic property measurements that were independent of hydrogel thickness, despite up to 60% reduction in thickness due to cell-mediated contraction. Notably, acoustic attenuation coefficients increased with increasing cell concentration (p<0.001), reflecting hydrogel cellularity independent of contracted hydrogel thickness. This approach enables accurate measurement of the intrinsic acoustic properties of biomaterials and engineered tissues to provide new insights into their structure and cellularity.
Publisher
Cold Spring Harbor Laboratory