Temporal regulation of ZBTB16 expression by glucocorticoids alters human cortical neurogenesis

Author:

Krontira Anthi C.ORCID,Cruceanu CristianaORCID,Kyrousi Christina,Dony Leander,Link Marie-Helen,Kappelmann NilsORCID,Pöhlchen Dorothee,Roeh SimoneORCID,Sportelli Vincenza,Wölfel Barbara,Ködel Maik,Sauer Susann,Monika-Rex-Haffner ,Labeur Marta,Cappello SilviaORCID,Binder Elisabeth B.ORCID

Abstract

SummaryGlucocorticoids are important for proper organ maturation1. Increased exposure to these hormones during pregnancy, as a result of commonly prescribed synthetic glucocorticoids such as dexamethasone in preterm births2, has been associated with lasting effects on the offspring, including on neurodevelopment and neuropsychiatric disease risk3. While the consequences of glucocorticoid excess in term and especially adult brain have been extensively studied, mainly in rodents4, studies on their effects during early human cortical development are absent. Here we use human cerebral organoids and mice to study cell-type specific effects of glucocorticoids on neurogenic processes. We show that glucocorticoid administration during neurogenesis alters the cellular architecture of the developing cortex by increasing a specific type of gyrencephalic species-enriched basal progenitors that co-express PAX6 and EOMES. This effect is mediated via the glucocorticoid-responsive transcription factor ZBTB16 as shown with overexpression, genetic knock-down and reporter assays experiments in organoids and embryonic mouse models and leads to increased production of deep-layer neurons. A phenome-wide mendelian randomization analysis of a genetic intronic enhancer variant that moderates glucocorticoid-induced ZBTB16 levels, as shown with enhancer assays and enhancer-editing in organoids, reveals potential causal relationships with increased educational attainment as well as neuroimaging phenotypes in adults. In this study we provide a cellular and molecular pathway for the effects of glucocorticoids on human neurogenesis that potentially explains postnatal phenotypes and may be used to refine treatment guidelines.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3