The net charge of the K-loop regulates KIF1A superprocessivity by enhancing microtubule affinity in the one-head-bound state

Author:

Zaniewski Taylor M.ORCID,Hancock William O.ORCID

Abstract

AbstractKIF1A is an essential neuronal transport motor protein in the kinesin-3 family, known for its superprocessive motility. We determined that superprocessivity of KIF1A dimers originates from a unique structural domain, the lysine rich insertion in loop-12 termed the ‘K-Loop’, which enhances electrostatic interactions between the motor and the microtubule. In 80 mM PIPES buffer, replacing the native loop-12 of KIF1A with that of kinesin-1, resulted in a 6-fold decrease in run length, and adding additional positive charge to loop-12 enhanced the run length. Interestingly, swapping the KIF1A loop-12 into kinesin-1 did not enhance its run length, consistent with the two motor families using different mechanochemical tuning to achieve persistent transport. To investigate the mechanism by which the KIF1A K-loop enhances processivity, we used microtubule pelleting and single-molecule dwell times assays in ATP and ADP. First, the microtubule affinity was similar in ATP and in ADP, consistent with the motor spending the majority of its cycle in a weakly-bound state. Second, the microtubule affinity and single-molecule dwell time in ADP were 6-fold lower in the loop-swap mutant compared to wild type. Thus, the positive charge in loop-12 of KIF1A enhances the run length by stabilizing the motor binding in its vulnerable one-head-bound state. Finally, through a series of mutants with varying positive charge in the K-loop, we found that the KIF1A processivity is linearly dependent on the charge of loop-12.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. KIF1A is kinetically tuned to be a superengaging motor under hindering loads;Proceedings of the National Academy of Sciences;2023-01-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3