Estimating the genetic parameters of yield-related traits under different nitrogen conditions in maize

Author:

Delen Semra Palali,Xu Gen,Velazquez-Perfecto Jenifer,Yang Jinliang

Abstract

ABSTRACTUnderstanding the genetic basis responding to nitrogen (N) fertilization in crop production is a long-standing research topic in plant breeding and genetics. Albeit years of continuous efforts, the genetic architecture parameters, such as heritability, polygenicity, and mode of selection, underlying the N responses in maize remain largely unclear. In this study, about n = 230 maize inbred lines were phenotyped under high N (HN) and low N (LN) conditions for two consecutive years to obtain six yield-related traits. Heritability analyses suggested that traits highly responsive to N treatments were less heritable. Using publicly available SNP genotypes, the genome-wide association study (GWAS) was conducted to identify n = 231 and n = 139 trait-associated loci (TALs) under HN and LN conditions, respectively, and n = 162 TALs for N-responsive (NR) traits. Furthermore, genome-wide complex trait Bayesian (GCTB) analysis, a method complementary to GWAS, was performed to estimate genetic parameters, including genetic polygenicity and the mode of selection (S). GCTB results suggested that the NR value of a yield component trait was highly polygenic and that four NR traits exhibited negative correlations between SNP effects and their minor allele frequencies (or the S value < 0) — a pattern consistent with negative selection to purge deleterious alleles. This study reveals the complex genetic architecture underlying N responses for yield-related traits and provides insights into the future direction for N resilient maize development.

Publisher

Cold Spring Harbor Laboratory

Reference32 articles.

1. The Utilization of Nitrogen by Plants: A Whole Plant Perspective

2. Heffer, P. Assessment of fertilizer use by crop at the global level 2010-2010/11 international fertilizer industry association (ifa), paris, france (2013).

3. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM 2.5 air pollution

4. Identification of quantitative trait loci for nitrogen use efficiency in maize;Mol. Breed,1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3